Serrin’s overdetermined problem for fully nonlinear nonelliptic equations
نویسندگان
چکیده
Let $u$ denote a solution to rotationally invariant Hessian equation $F(D^2u)=0$ on bounded simply connected domain $\Omega\subset R^2$, with constant Dirichlet and Neumann data $\partial \Omega$. In this paper we prove that if is real analytic not identically zero, then radial $\Omega$ disk. The fully nonlinear operator $F\not\equiv 0$ of general type, in particular, assumed be elliptic. We also show the result sharp, sense it true connected, or $C^{\infty}$ but analytic.
منابع مشابه
Overdetermined problems for fully nonlinear elliptic equations
We prove that the existence of a solution to a fully nonlinear elliptic equation in a bounded domain Ω with an overdetermined boundary condition prescribing both Dirichlet and Neumann constant data forces the domain Ω to be a ball. This is a generalization of Serrin’s classical result from 1971.
متن کاملAveraging for Non-periodic Fully Nonlinear Equations
This paper studies the averaging problem for some fully nonlinear equations of degenerate parabolic type with a Hamiltonian not necessarily periodic in the fast variable. Our aim is to point out a sufficient condition on the Hamiltonian to pass to the limit in the starting equation. Also, we investigate when this condition is not completely fulfilled and discuss some examples concerning determi...
متن کاملPerron’s method for nonlocal fully nonlinear equations
This paper is concerned with existence of viscosity solutions of non-translation invariant nonlocal fully nonlinear equations. We construct a discontinuous viscosity solution of such nonlocal equation by Perron’s method. If the equation is uniformly elliptic, we prove the discontinuous viscosity solution is Hölder continuous and thus it is a viscosity solution.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On the Dirichlet Problem for Non-totally Degenerate Fully Nonlinear Elliptic Equations
We prove some comparison principles for viscosity solutions of fully nonlinear degenerate elliptic equations that satisfy conditions of partial non-degeneracy instead of the usual uniform ellipticity or strict monotonicity. These results are applied to the well-posedness of the Dirichlet problem under suitable conditions at the characteristic points of the boundary. The examples motivating the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis & PDE
سال: 2021
ISSN: ['2157-5045', '1948-206X']
DOI: https://doi.org/10.2140/apde.2021.14.1429